If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+69x-270=0
a = 1; b = 69; c = -270;
Δ = b2-4ac
Δ = 692-4·1·(-270)
Δ = 5841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5841}=\sqrt{9*649}=\sqrt{9}*\sqrt{649}=3\sqrt{649}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(69)-3\sqrt{649}}{2*1}=\frac{-69-3\sqrt{649}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(69)+3\sqrt{649}}{2*1}=\frac{-69+3\sqrt{649}}{2} $
| 2=1*a | | 3(x+4)-2-2=(2x-3)+5 | | 7x+5x=1 | | 3x+7-227=0 | | -32(t)+32=0 | | -32t+32=0 | | -32t+32+48=0 | | 10x/3-5x=4 | | 5^x+5^(x-1)=6/5 | | 5+17y=29 | | 3y-2y=-2+7 | | 3x-6/3=4 | | 2^x-1+2^x+2^x+1=14 | | 3(2-x)=2(4+2x) | | 9+-5/8c=-1 | | 3.25/8=a/1 | | (9x+10)(8x-3)=0 | | 61+4x=23 | | 6-6x+4x-20=4.5-3x | | -10+3y+y^2=0 | | -40+3y+y^2=0 | | Y(3+y)=40 | | 1n+6=42 | | 1n+6=4 | | 3x-10=3x+1 | | 2^(y+3)=16^y | | -1/5x+4=2/3x-1 | | -12n-4=6n^2 | | 4-(20x6)=-116 | | 154-4y+4y-31=123 | | 0.5^(x)=16 | | 3x-3x+2(x-3)=x+2 |